Применение:
- для изучения геологического разреза скважин и массива горных пород в околоскважинном и межскважинном пространствах;
- для контроля технического состояния скважин;
- для разработки нефтяных и газовых месторождений.
Первые геофизические исследования (термометрия) выполнены Д. Голубятниковым в 1908 г. на нефтяных промыслах г. Баку.
В 1926 г. братьями Шлюмберже (Франция) был предложен электрический каротаж, высокая эффективность которого обеспечила его быстрое внедрение и развитие других методов геофизических исследований.
В СССР в разработку теории и техники геофизических исследований большой вклад внесли Л. Альпин, В. Дахнов и др, в США - Г. Арчи, Г. Гюйо, Дж. Долл и др.
Геофизические исследования, проводимые для изучения геологического разреза скважин, называют каротажем:
- осуществляется электрическими, электромагнитными, магнитными, акустическими, радиоактивными (ядерно-геофизическими) и другими методами;
- с помощью приборов, спускаемых в скважину на каротажном кабеле, измеряются геофизические характеристики, зависящие от одного или совокупности физических свойств горных пород и их расположения в разрезе скважины;
- скважинные приборы:
- каротажные зонды (устройства, содержащие источники и приемники наблюдаемого поля), сигналы которых по кабелю непрерывно или дискретно передаются на поверхность и регистрируются наземной аппаратурой в виде кривых или массивов цифровых данных.
При электрическом каротаже изучают:
- удельное электрическое сопротивление,
- диффузионно-адсорбционную,
- искусственно вызванную электрохимическую активность горных пород и т.п.
- боковое каротажное зондирование (измерения 3-электродными градиент-зондами разной длины),
- боковой каротаж (измерения зондами с фокусировкой тока),
- микрокаротаж и боковой микрокаротаж.
Различие в диффузионно-адсорбционной активности пород используется в каротаже самопроизвольной поляризации, а способность пород поляризоваться под действием электрического тока - в каротаже вызванной поляризации, основанном на различии потенциалов, возникающих на поверхности контактов руд (например, сульфидных), углей с другими горными породами.
- удельная электрическая проводимость (индукционный каротаж),
- магнитная восприимчивость (каротаж магнитной восприимчивости, КМВ),
- диэлектрическая проницаемость (диэлектрический каротаж, ДК) горных пород индукционными зондами на различных частотах 1 кГц (КМВ), 100 кГц и 40 МГц (ДК).
- магнитная восприимчивость пород,
- характеристики магнитного поля.
- интервальных времен (скорости), амплитуд,
- других параметров упругих волн ультразвукового и звукового диапазона.
Широко используется изучение характеристик нейтронного и гамма-излучения, возникающих в породах при облучении их стационарным источником нейтронов (нейтрон-нейтронный каротаж и нейтронный гамма-каротаж) или источниками гамма-излучений (гамма-гамма-каротаж).
Модификации радиоактивного каротажа применяются с импульсными источниками нейтронов (импульсный нейтрон-нейтронный каротаж, импульсный нейтронный гамма-каротаж) и гамма-излучения (импульсный гамма-гамма-каротаж).
Естественное гамма-излучение пород исследуется в гамма-каротаже.
В активационном радиоактивном каротаже изучаются характеристики излучения искусственных радиоактивных изотопов, возникающих в породах при облучении их источником ионизирующих излучений.
Ядерно-магнитный каротаж заключается в наблюдении за изменением электродвижущей силы, возникающей в катушке зонда в результате свободной прецессии протонов в импульсном магнитном поле.
Газовый каротаж обеспечивает изучение физическими методами содержания и состава углеводородных газов и битумов в буровом растворе, а также параметров, характеризующих режим бурения.
Иногда применяются исследования, основанные на определении механических свойств в процессе бурения (механический каротаж).
Околоскважинные и межскважинные исследования основаны на изучении в массивах горных пород особенностей естественных или искусственно созданных геофизических полей:
- магнитного (скважинная магниторазведка), гравитационного (скважинная гравиразведка), распространения радиоволн (радиоволновой метод, РВМ), упругих волн (акустическое просвечивание), постоянного или низкочастотного электрического (метод заряженного тела), нестационарного электромагнитного (метод переходных процессов);
- пьезоэлектрического эффекта, возникающего в горных породах под воздействием упругих колебаний (пьезоэлектрический метод);
- потенциалов вызванной поляризации, возникающих на контакте рудного тела в результате воздействия источника тока в скважине или на поверхности Земли (контактный метод поляризационных кривых) и др.
В некоторых случаях поле наблюдается на поверхности Земли.
При разведке акустическим просвечиванием возбуждение и наблюдение волн осуществляется так же, как в РВМ.
В методе заряженного тела:
- токовый электрод размещают в скважине против рудного тела,
- наблюдения производят в скважине или на поверхности.
При контроле технического состояния скважин измеряют:
- ее зенитный угол и азимут (инклинометрия),
- средний диаметр (кавернометрия),
- расстояние от оси прибора до стенки скважины (профилеметрия),
- температуру (термометрия),
- удельное электрическое сопротивление бурового раствора (резистивиметрия),
- определяют высоты подъема цемента в затрубном пространстве скважины и его качество (контроль цементирования) по данным кривым акустического и гамма-гамма-каротажа и др.
Отбор проб флюидов из пласта (опробование пластов) производится опробователями пластов, которые на каротажном кабеле опускаются в скважину на заданную глубину.
После этого блок отбора (башмак) прижимается к стенке скважины и кумулятивной перфорацией создается дренажный канал между пластом и прибором для подачи флюида в приемный баллон прибора.
Образцы пород из стенок скважин отбирают стреляющими грунтоносами и сверлящими керноотборниками.
При анализе проб определяется содержание нефти, газа и воды, а также компонентный состав газа, что дает возможность оценить нефтегазоносность пласта, литологию, наличие углеводородов, а иногда и коэффициент пористости породы.
Геофизические исследования применяют при поисках и разведке:
- нефти и газа (промысловая геофизика),
- угля (угольная скважинная геофизика),
- руд и строительных материалов (рудная скважинная геофизика),
- воды (геофизические исследования гидрогеологических скважин).
- расчленение разреза скважин на пласты,
- определение их литологии и глубины залегания,
- выявление полезных ископаемых (нефти, газа, угля и др.),
- корреляцию разрезов скважин,
- оценку параметров пластов для подсчета запасов (эффективную мощность, содержание полезных ископаемых),
- определение объема залежи нефти, газа, угля или рудного тела,
- оценку физико-механических свойств пород при строительстве различных сооружений и др.
Геофизические исследования - основной способ геологической документации разрезов скважин, дающий большой экономический эффект за счет сокращения отбора керна и количества испытаний пластов.
Повышение эффективности геофизических исследований связано с разработкой и внедрением новых методов, а также с совершенствованием методики и техники исследований:
- внедрением цифровых методов обработки и интерпретации данных,
- созданием цифровых каротажных лабораторий, управляемых бортовым компьютером,
- созданием комплексных геолого-геохимическо-геофизических информационно-измерительных и обрабатывающих комплексов, высокоточных и термобаростойких комплексных скважинных приборов и др.
Целесообразность применения дополнительных методов должна быть обоснована промыслово-геофизическим предприятием.
Комплексы методов исследований уточняют в зависимости от конкретных геолого-технических условий по взаимно согласованному плану между геофизической и промыслово-геологичсской службами.
Заключения об интервалах негерметичности обсадной колонны, глубине установки оборудования, НКТ, положения забоя, динамического и статического уровней, интервале прихвата труб и привязке замеряемых параметров к разрезу, герметичности забоя выдаются непосредственно на скважине после завершения исследований, а по исследованиям, которые проводятся для определения интервалов заколонной циркуляции, распределения и состояния цементного камня за колонной, размеров нарушений колонны, - передаются по оперативной связи в течение 24 час после завершения измерений и через 48 час - в письменном виде.
В заключении геофизического предприятия приводятся результаты ранее проведенных исследований (в том числе и не связанных с КРС), а в случае их противоречия с данными предыдущих исследований, указываются причины.
Перед началом геофизических работ скважину заполняют жидкостью необходимой плотности до устья, а колонну шаблонируют до забоя.
Основная цель исследования - определение источников обводнения продукции скважины.
При выявлении источников обводнения продукции в действующих скважинах исследования включают измерения высокочувствительным термометром,
гидродинамическим и термокондуктивным расходомерами, влагомером, плотномером, резистивиметром, импульсным генератором нейтронов.
Комплекс исследований зависит от дебита жидкости и содержания воды в продукции.
Привязку замеряемых параметров по глубине осуществляют с помощью локатора муфт и ГК.
Для выделения обводнившегося пласта или пропластков, вскрытых перфорацией, и определения заводненной мощности коллектора при минерализации воды в продукции 100 г/л и более в качестве дополнительных работ проводят исследования импульсными нейтронными методами (ИНМ) как в эксплуатируемых, так и в остановленных скважинах:
- в случаях обводнения неминерализованной водой эти задачи решаются ИНМ по изменениям до и после закачки в скважину минерализованной воды с концентрацией соли более 100 г/л;
- измерения проводятся в комплексе с исследованиями высокочувствительным термометром для определения интервалов поглощения закачанной воды и выделения интервалов заколонной циркуляции;
- измерения ИНМ входят в основной комплекс:
- при исследовании пластов с подошвенной водой, частично вскрытых перфорацией,
- при минерализации воды в добываемой продукции более 100 г/л,
- по результатам измерений судят о путях поступления воды к интервалу перфорации - подтягиванию подошвенной воды по прискважинной зоне коллектора или по заколонному пространству из-за негерметичности цементного кольца.
- оценку состояния выработки запасов и величины коэффициента остаточной нефтенасыщенности пласта, вскрытом перфорацией, проверяют исследованиями ИНМ в процессе поочередной закачки в пласт 2 водных растворов, различных по минерализации.
Технология работ предусматривает закачку 3-4 м3 раствора на 1 м толщины коллектора.
Закачку раствора проводят отдельными порциями с замером параметра до стабилизации его величины.
Состояние насыщения коллекторов, представляющих объекты перехода на другие горизонты или приобщения пластов, оценивают по результатам геофизических исследований.
При минерализации воды в продукции более 50 г/л проводят исследования ИНМ.
При переводе добывающей скважины под нагнетание обязательными являются исследования гидродинамическим расходомером и высокочувствительным термометром, которые позволяют выделить отдающие или принимающие интервалы и оценить степень герметичности заколонного пространства.