USD 98.0562

+0.51

EUR 106.8883

+0.75

Brent 74.25

-1.31

Природный газ 2.681

+0.01

12 мин
...

Cпособ биохимического контроля очистки почвы участка

Cпособ биохимического контроля очистки почвы участка, загрязненного газовым конденсатом.

Активность фермента дегидрогеназы

В статье рассмотрен способ биохимического контроля очистки почвы участка, загрязненного газовым конденсатом или нейтрализации его шлама посредством анализа активности фермента дегидрогеназы.

В данном способе отбирают несколько проб:

- почвы фонового (незагрязненного) участка, биологического средства;

- почвы участка, загрязненного газовым конденсатом или его шлама;

- почвы участка, загрязненного газовым конденсатом, но с добавлением биологического средства или его шлама,

- почвы участка с добавлением биологического средства.

Определяют активность дегидрогеназы данных проб спектрофотометрическим методом.

При этом о начале процесса очистки или нейтрализации проб биологическим средством судят по повышению активности дегидрогеназы проб относительно активности фермента проб без добавления биологического средства, а об окончании процесса очистки или нейтрализации проб судят по выравниванию активности дегидрогеназы проб с активностью фермента проб почвы фонового участка или самого биологического средства.

Геоэкология газового конденсата, как частное научное направление геоэкологии углеводородов, изучает особенности загрязнения данным веществом окружающей среды и риск его негативного воздействия на человека, а также разрабатывает практические задачи в виде профилактических и ремедиационных мер по снижению данного риска.

Как известно, газовый конденсат представляет собой смесь жидких углеводородов (пентан + высшие гомологи), выделяющаяся из природных газов при эксплуатации газоконденсатной залежи в результате снижения пластовых давлений (ниже давления начала конденсации) и температуры [1].

Данное вещество состоит из бензиновых (интервал кипения от 30-80 до 200 оС) и керосиновых компонентов (200-300 оС) и, в меньшей степени, более высоко кипящих компонентов, а также характеризуется содержанием серы - чаще всего в сотых долях процента. Различают нестабильный газовый конденсат, то есть первичный продукт, выделяющийся из газа газоконденсатной залежи в промысловых условиях и стабильный конденсат, из которого удалены растворенные газы (метано-бутановая фракция).

Газовый конденсат является ценным природным сырьем для получения ароматических углеводородов (бензола, толуола, ксилолов), олефинов и других мономеров с последующей их переработкой в пластические массы, синтетические каучуки, волокна и смолы, а также для производства автомобильного бензина, реактивного, дизельного и котельного топлива.

В газовой промышленности, как и в любой другой техногенной сфере не исключены аварии, количество которых нельзя планировать, а избежать их на 100% практически невозможно. Аварии проявляются в виде разливов газового конденсата, сопровождаемых в ряде случаев пожарами, и происходящих, например, на стадии проведения геологоразведочных работ, этапе разработки газоконденсатных месторождений, а также при доставке потребителю наливным транспортом или с помощью конденсатопроводов [2]. При авариях поступают большие массы газового конденсата, значительно превышающие его предельно допустимую концентрацию в окружающей среде и загрязнение последней может продолжаться до восстановления нормального технологического процесса или ликвидации аварии [3].

За последние 10 лет в различных регионах нашей страны был зафиксирован ряд случаев аварийных разливов газового конденсата в окружающую среду. Так, по данным [3], в Оренбургской области в результате несанкционированной (криминальной) врезки в магистральный конденсатопровод произошел разлив около 145 м3 газового конденсата с загрязнением почвы на площади 4,5 га [3].

По информации Росгидромета порыв конденсатопровода от скважины привел к загрязнению атмосферного воздуха сероводородом в некоторых районах г. Оренбурга [4]. В Республике Коми вследствие разгерметизации конденсатопровода на территории газоперерабатывающего завода на рельеф местности вылилось около 25 м3 конденсата [5]. В Оренбургской области разгерметизация нитки конденсатопровода привела к утечке газового конденсата на подстилающую поверхность и загрязнению углеводородами воздушной среды ближайших к аварийному участку населенных пунктов [6]. В том же регионе в результате несанкционированной врезки в конденсатопровод произошла утечка газового конденсата, что привело к загрязнению воздуха сероводородом [7]. Очередная утечка газового конденсата из конденсатопровода стала причиной обнаружения сероводорода и углеводородов в воздухе в некоторых районах г Оренбурга [8]. В Кировской области в результате схода с рельсов железнодорожных цистерн с газовым конденсатом произошел его разлив и возгорание [9].

Загрязнение, в частности почвы газовым конденсатом не только надолго выводит ее из сельскохозяйственного оборота, но и создает опасность загрязнения поверхностных и подземных вод, используемых для хозяйственно-питьевых целей. Особенно серьезная экологическая ситуация складывается, когда производственные объекты газовой промышленности расположены в густонаселенных районах. Аварийное загрязнение почвы газовым конденсатом оказывает негативное воздействие на человека за счет улетучивания с ее поверхности растворенных в газовом конденсате газов. При этом острая интоксикация некоторыми газовыми составляющими газового конденсата приводит к летальному исходу, вследствие сердечных нарушений и отека легких [2]. В этой связи в качестве профилактических мер должно быть оперативное проведение эвакуации населения при аварийном разливе газового конденсата в связи с угрозой интоксикации или пожара, а также осуществление систематического контроля экологической ситуации в местах расположения производственных объектов газовой промышленности путем анализа содержания газового конденсата в окружающей среде и сопоставления с его предельно допустимой концентрацией [3].

Что касается ремедиационных мер, то к их числу можно отнести очистку почвы от газового конденсата или нейтрализацию его шлама, поступающего с линейной части магистральных газопроводов и из сосудов высокого давления компрессорных станций при их продувках и накапливаемого в амбарах. Между тем, накопление шлама газового конденсата в амбарах представляет риск, в связи с его улетучиванием и загрязнением атмосферного воздуха, а также с опасностью интоксикации или возникновения пожара.

Как показали наши исследования очистка почвы от газового конденсата или нейтрализация его шлама эффективно производится с помощью такого биологического средства как биокомпоста «Пикса», получаемого путем ферментации торфо-навозной смеси и обогащения углеводородокисляющими микроорганизмами в количестве 106 клеток/г и питательными веществами [10]. Вышеуказанное количество микроорганизмов в биокомпосте считается достаточным для самовоспроизводства их популяции, как одного из важных условий эффективной очистки почвы, загрязненной газовым конденсатом и нейтрализации его шлама, происходящей путем микробиологического разложения углеводородов данного вещества [11].

Эффективность очистки почвы от газового конденсата или нейтрализации его шлама оценивается посредством биохимического контроля, включающего анализ активности фермента дегидрогеназы, и составляющего основу способа, защищенного патентом Российской Федерации [12]. Факт процесса очистки почвы от газового конденсата или нейтрализации его шлама под действием биокомпоста доказывается повышением активности фермента, как продуцента углеводородокисляющих микроорганизмов (бактерий, дрожжей и грибов) [11]. При этом механизм микробиологического разложения углеводородов заключается в поглощении данных веществ посредством гидрофобизации клеточной стенки микроорганизма, реализуемой через биосинтез специфических соединений - липофильных глико-, пептидо- и пептидогликолипидов. При прямом контакте, например, бактерий с пленкой углеводородов, последние проникают в клетку путем пассивной диффузии, постепенно пропитывая клеточную стенку, и достигают местоположения ферментов на мембранах.

Наряду с молекулярно-диффузным прохождением углеводородов, через поверхность всей клеточной стенки, их поступление возможно через особые ультрамикроскопические поры. Такие каналы, заполненные электроноплотным (гранулярным) веществом, были впервые обнаружены у дрожжей.

Использование активности дегидрогеназы для оценки эффективности очистки почвы участка от газового конденсата или нейтрализации его шлама было не случайным, так как этот фермент принимает непосредственное участие в разложении углеводородов газового конденсата. Дегидрогеназа катализирует отщепление водорода от молекул продуктов окисления углеводородов (реакция дегидрирования).

Биохимический контроль очистки

Способ биохимического контроля очистки почвы участка, загрязненного газовым конденсатом и нейтрализации его шлама осуществляют следующим образом: после внесения биологического средства в почву загрязненную газовым конденсатом или в его шлам, отбирают в динамике (через каждые 10 суток) пробы различных вариантов (в 6-ти кратной повторности), а именно: почвы из фонового (незагрязненного) участка, биологического средства, почвы из участка, загрязненного газовым конденсатом или его шлама, почвы из участка, загрязненного газовым конденсатом, но с добавлением биологического средства или шлама газового конденсата, также с добавлением биологического средства.

Затем в этих пробах, приведенных в воздушно-сухое состояние, определяют активность фермента дегидрогеназы с помощью устройства в виде модифицированной колбы Эрленмейера (1) с коленчатым отростком (2)

Рис. 1. Устройство для анализа активности фермента дегидрогеназы проб при очистке почвы участка, загрязненного газовым конденсатом и нейтрализации его шлама в амбаре: 1 - модифицированная колба Эрленмейера; 2 - коленчатый отросток колбы; a - смесь пробы, карбоната кальция и растворов глюкозы и 2,3,5-трифенилтетразолийхлорида; б - насыщенный щелочной раствор пирогаллола.

С целью анализа активности дегидрогеназы, 1 г пробы, отдельно из каждого вышеназванного варианта, а также 0,1 г тонко измельченного карбоната кальция (CaCO3), по 1 мл 1%-х водных растворов глюкозы (C6H12O6) и 2,3,5-трифенилтетразолийхлорида (C19H15N4Cl) последовательно помещают в колбу и смесь (а) перемешивают встряхиванием. В коленчатый отросток с помощью шприца вводят насыщенный щелочной раствор пирогаллола, C6H3(OH)3 (б). Далее колбу герметизируют пробками, используя вакуумную смазку и ставят в термостат на инкубирование при 30 оС на 1 сутки. Начинается биохимическая реакция, когда 2,3,5-трифенилтетразолийхлорид (бесцветное вещество) акцептируя мобилизованный дегидрогеназой водород, превращается в инкубируемой среде в 2,3,5-трифенилформазан (C19H16N4, вещество красного цвета) [13]:

C19H15N4Cl + H2 = C19H16N4 + HCl

После завершения инкубирования проб производится экстракция образующегося в них 2,3,5-трифенилформазана из каждой колбы с помощью этилового спирта (C2H5OH) 5 раз по 4 мл. Далее экстракты каждой пробы объединяют до объема в 25 мл и измеряют оптическую плотность на спектрофотометре при длине волны 490 нм и рассчитывают количество 2,3,5-трифенилформазана (ТФФ) по калибровочному графику, составленному, например, от 1 до 30 мкг/мл данного вещества и выражают в единицах мкг ТФФ/(г·сут).

При этом о начале процесса очистки почвы участка, загрязненного газовым конденсатом или нейтрализации его шлама судят по повышению активности дегидрогеназы проб с добавлением биологического средства относительно активности фермента проб без добавления биологического средства. Об окончании процесса очистки или нейтрализации судят по выравниванию активности дегидрогеназы проб с добавлением биологического средства с активностью фермента проб почвы фонового участка или самого биологического средства.

Так, при внесении биологического средства в виде биокомпоста «Пикса» в почву участка, загрязненного газовым конденсатом (1,8-5,4 г/кг) из продувочной свечи на территории дожимной компрессорной станции (Ставропольский край), активность дегидрогеназы за 40 суток возрастала в 6-9 раз по сравнению с вариантом без внесения этого биокомпоста (табл. 1). Как видно, с возрастанием дозы биокомпоста эффект очистки почвы от углеводородов газового конденсата повышается. Однако оптимальной дозой биокомпоста можно считать 8 кг/м2, так как дальнейшее ее повышение не приводит к столь резкому возрастанию эффекта очистки как в этом случае.

Таблица 1. Активность фермента дегидрогеназы почвы участка, загрязненного газовым конденсатом, при внесении различных доз биокомпоста для очистки. ТФФ - 2,3,5-трифенилформазан

Дозы

Активность,

мкг ТФФ/(г·сут)

Контроль, 0 кг/м2

53,4

Биокомпост, 4 кг/м2

305,8

Биокомпост, 8 кг/м2

469,1

Биокомпост, 12 кг/м2

460,1

Биокомпост, 16 кг/м2

472,7

Что касается нейтрализации шлама газового конденсата, поступающего с линейной части магистральных газопроводов и из сосудов высокого давления дожимной компрессорной станции при их продувках в том же регионе, то она производилась в месте накопления вещества (в амбаре) также с помощью биокомпоста «Пикса». Было установлено, что активность дегидрогеназы после 40 суток инкубирования повышалась с возрастанием соотношения биокомпост:шлам газового конденсата (табл. 2).

Таблица 2. Активность фермента дегидрогеназы смеси биокомпоста со шламом газового конденсата в различных соотношениях, для его нейтрализации в амбаре. ТФФ - 2,3,5-трифенилформазан

Соотношение биокомпост:шлам газового конденсата

Активность,

мкг ТФФ/(г·сут)

1:1

11,0

2:1

10,8

4:1

9,5

В качестве оптимального соотношения этих компонентов можно принять 2:1, так как дальнейшее его повышение не приводило к возрастанию эффекта нейтрализации как в этом случае.

Заключение

Таким образом, способ биохимического контроля очистки почвы участка, загрязненного газовым конденсатом или нейтрализации его шлама заключается в анализе активности фермента дегидрогеназы, непосредственно участвующего в разложении углеводородов газового конденсата. При этом повышение активности дегидрогеназы почвы участка, загрязненного газовым конденсатом или его шлама под действием биологического средства, относительно вариантов без добавления биологического средства, будет свидетельствовать о микробиологическом характере разложения углеводородов газового конденсата.

Литература

1. Российская газовая энциклопедия. М.: Большая Российская энциклопедия, 2004. 527 с.

2. Андреев О.П., Башкин В.Н., Галиулин Р.В., Арабский А.К., Маклюк О.В. Решение проблемы геоэкологических рисков в газовой промышленности. Обзорная информация. М.: Газпром ВНИИГАЗ, 2011. 78 с.

3. Гендель Г.Л., Клейменова И.Е., Донецкова А.А., Беликова Н.Г., Ивановская И.Б. Особенности проведения работ по очистке земель, нарушенных и загрязненных в результате аварии на конденсатопроводе // Защита окружающей среды в нефтегазовом комплексе. 2006. № 6. С. 66-69.

4. Ованесянц А.М., Красильникова Т.А., Иванов А.Б. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июне 2007 г. // Метеорология и гидрология. 2007. № 9. С. 100-105.

5. Ованесянц А.М., Красильникова Т.А., Иванов А.Б. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июне 2008 г. // Метеорология и гидрология. 2008. № 9. С. 102-106.

6. Ованесянц А.М., Красильникова Т.А., Иванов А.Б. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в феврале 2010 г. // Метеорология и гидрология. 2010. № 5. С. 100-107.

7. Ованесянц А.М., Красильникова Т.А., Иванов А.Б. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в сентябре 2010 г. // Метеорология и гидрология. 2010. № 12. С. 98-103.

8. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в январе 2013 г. // Метеорология и гидрология. 2013. № 4. С. 111-116.

9. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в феврале 2014 г. // Метеорология и гидрология. 2014. № 5. С. 102-107.

10. Семенцов А.Ю. Применение суперкомпоста ПИКСА для реабилитации городских почв. Методические рекомендации. М.: ВНИИА. 2006. 32 с.

11. Коронелли Т.В. Принципы и методы интенсификации биологического разрушения углеводородов в окружающей среде (обзор) // Прикладная биохимия и микробиология. 1996. Том 32. № 6. С. 579-585.

12. Башкин В.Н., Бухгалтер Э.Б., Галиулин Р.В., Коняев С.В., Калинина И.Е., Галиулина Р.А. Патент на изобретение № 2387996. Российская Федерация. Способ контроля очистки почв, загрязненных углеводородами, и нейтрализации углеводородных шламов посредством анализа активности дегидрогеназы // Бюллетень. Изобретения. Полезные модели. 2010. № 12 (IV ч.). С. 938-939.

13. Хазиев Ф.Х. Ферментативная активность почв. Методическое пособие. М.: Наука, 1976. 180 с.

The method of biochemical control of cleaning of site soil polluted by gas condensate or neutralization of its slime by analysis of dehydrogenase enzyme activity is considered. In this method select several samples: soil of background (uncontaminated) site, biological means, soil of site which polluted by gas condensate or its slime, soil of site which polluted by gas condensate, but with addition of biological means or its slime also with addition of biological means and determine of dehydrogenase activity of these samples by a spectrophotometer method. In this case about beginning of cleaning or neutralization process of samples by biological means judge on increase of dehydrogenase activity of samples concerning enzyme activity of samples without addition of biological means, and about end of cleaning or neutralization process of samples judge on alignment of dehydrogenase activity of samples with enzyme activity of samples of background site soil or itself biological means.

Авторы:

Р.В. Галиулин, доктор географических наук, ведущий научный сотрудник Института фундаментальных проблем биологии РАН, Московская область, г. Пущино

Р.А. Галиулина, научный сотрудник Института фундаментальных проблем биологии РАН, Московская область, г. Пущино

В.Н. Башкин, доктор биологических наук, главный научный сотрудник ООО «Газпром ВНИИГАЗ», Московская область, пос. Развилка



Автор: Р.В. Галиулин, Р.А. Галиулина, В.Н. Башкин,