Углеродное волокно - материал, состоящий из тонких нитей диаметром 3-15 микрон, образованных преимущественно атомами углерода.
Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу.
Выравнивание кристаллов придает волокну большую прочность на растяжение.
Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.
УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода.
Температурная обработка состоит из нескольких этапов.
-
1й этап. Окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры.
-
2й этап. Нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C.
В результате карбонизации происходит образование графитоподобных структур.
Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде.
В результате графитизации количество углерода в волокне доводится до 99 %.
Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.
УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600-2000 °С в отсутствии кислорода механические показатели волокна не изменяются.
Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике.
На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью.
УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода.
Их предельная температура эксплуатации в воздушной среде составляет 300-350°С.
Нанесение на УВ тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток.
Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др.
Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2•10−3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.
Активацией УВ получают материалы с большой активной поверхностью (300-1500 м²/г), являющиеся прекрасными сорбентами.
Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.
Обычно УВ имеют прочность порядка 0,5-1 ГПа и модуль 20-70 ГПа, а подвергнутые ориентационной вытяжке - прочность 2,5-3,5 ГПа и модуль 200-450 ГПа.
Благодаря низкой плотности (1,7-1,9 г/см³) по удельному значению (отношение прочности и модуля к плотности) механических свойств лучшие УВ превосходят все известные жаростойкие волокнистые материалы.
Удельная прочность УВ уступает удельной прочности стекловолокна и арамидных волокон.
На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты.
Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жесткие температурные воздействия, чем обычные пластики.
УВ применяют для армирования композиционных, теплозащитных, хемостойких материалов в качестве наполнителей в различных видах углепластиков.
Из УВМ изготавливают электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники.
На основе УВ получают жесткие и гибкие электронагреватели, в том числе ставшие популярными т. н. «карбоновые нагреватели», обогреваемую одежду и обувь.
Углеродный войлок - единственно возможная термоизоляция в вакуумных печах, работающих при температуре 1100 °C и выше.
Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоев для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок.