Вырабатывается в значительно меньших масштабах, чем топливо из нефтяного сырья, однако производство синтетического топлива имеет перспективу развития (особенно на основе дешевых углей открытой добычи) в связи с ограниченными запасами нефти.
Растет интерес к GTL-технологиям по переводу газа в жидкое состояние (gas to liquids technologies).
В связи с декарбонизацией экономики стал актуальным поиск технологий производства синтетического топлива без использования углеводородов.
Используя возобновляемую и / или ядерную энергию, двуокись углерода и вода могут быть переработаны в углеводородное топливо в небиологическом процессе без использования ископаемого топлива или биомассы.
CO2 может быть уловлен из крупных промышленных источников и / или из атмосферы.
Проблема состоит в том, чтобы найти жизнеспособную комбинацию между технологией процесса и альтернативными энергиями.
За последнее 10-летие были предприняты значительные усилия для изучения производства возобновляемого синтез-газа:
- термохимическими путями, включающими агрессивные условия, особенно высокие температуры (между 700 и 1100 ° C).
- электролизом . В этом случае затраты энергии высоки.
Разрабатываются технологии, требующие менее агрессивных условий реакции, например, умеренные температуры (700-850 ° С), и которые могут быть более практичными.
Также использование дешевого водорода из ветра или ядерной энергии в низкий сезон способствовало их экономической жизнеспособности.
Проблемы вызваны ограничениями термодинамического равновесия, наложенными ниже 550 ° С, и конкуренцией за реакции метанирования и коксования при температуре выше 550 ° С до 750 ° С, в зависимости от катализаторов.
Нужно оценить набор условий и катализаторов.
Сдвиг водяного газа является равновесной реакцией, для осуществления обратной реакции требуется многостадийный процесс с эффективными процессами разделения.
Это зависит от повышения рентабельности рекуператоров из газа в газ при относительно низких давлениях для ограничения реакции метанирования.
Предварительное моделирование показывает, что восстановление СО2 до СО примерно с 2,2 МДж / кг СО может быть практичным в промышленном масштабе.
Реформирование метана с помощью CO2 является хорошо известным процессом.
Метан является продуктом гидрирования оксида углерода в процессе Фишера-Тропша.
Также его можно получить гидрированием CO2 с помощью процесса Сабатье или с помощью биологических процессов, таких как метаногенез.
Обычно его добывают из газовых скважин в качестве основного компонента природного газа.