Запасы трудноизвлекаемых нефтей в мире, по оценкам экспертов, превышают 1 трлн. тонн и в развитых промышленных странах рассматриваются как существенный резерв добычи нефти. Россия входит в первую десятку стран с крупнейшими запасами нефти, уступая по этому показателю только государствам Ближнего Востока и Венесуэле .
Доля трудноизвлекаемых запасов нефти в России постоянно растет. На долю активных приходится треть всех разведанных запасов, 67% - это трудноизвлекаемые запасы, в том числе высоковязкие нефти - 13 %, малопроницаемые коллекторы - 36. В Западной Сибири около 47 % текущих запасов нефти приходятся на коллектора с низкой проницаемостью, более 25 % - Волго-Уральской НГП и 19 % - в Тимано-Печoрской провинции. Для эффективного освоения трудноизвлекаемых запасов нефти и дальнейшего увеличения ее добычи необходимо создание и широкомасштабное применение новых комплексных технологий увеличения нефтеотдачи, сочетающих базовое воздействие на пласт закачкой воды или водяного пара с физико-химическими методами, увеличивающими охват пласта базовым воздействием и коэффициент нефтевытеснения при одновременной интенсификации разработки.
Для увеличения нефтеотдачи месторождений с высоко неоднородными коллекторами на поздней стадии разработки перспективно использовать сочетание гелей и нефтевытесняющих композиций. После изоляции высокопроницаемых обводнившихся пластов путем их блокирования гелем необходимо интенсифицировать фильтрацию жидкости в низкопроницаемом пласте. Поэтому необходима комплексная технология - сначала воздействие гелеобразующей композицией, увеличивающей охват объекта заводнением или паротепловым воздействием, а затем - нефтевытесняющей композицией, интенсифицирующей разработку низкопроницаемого пласта и увеличивающей коэффициент нефтевытеснения.
В Институте химии нефти СО РАН созданы 8 новых промышленных технологий увеличения нефтеотдачи и ограничения водопритока для месторождения с трудно извлекаемыми запасами, в том числе залежей высоковязких нефтей. Создана перспективная концепция использования энергии пласта или закачиваемого теплоносителя для генерации нефтевытесняющего флюида, гелей и золей непосредственно в пласте. Разработаны физико-химические основы методов увеличения нефтеотдачи с применением химических интеллектуальных систем: гелеобразующих систем и композиций поверхностно-активных веществ (ПАВ), сохраняющих, саморегулирующих в пласте длительное время комплекс свойств, оптимальный для целей нефтевытеснения. Для увеличения нефтеотдачи залежей высоковязкой нефти на поздней стадии разработки создана технология чередующегося паротеплового и физико-химического воздействия нефтевытесняющими композициями на основе ПАВ, генерирующими непосредственно в пласте СО2 и щелочную буферную систему (композиции НИНКА).
Доминирующая роль принадлежит гель-технологиям, увеличивающим охват пласта заводнением. Термотропные гелеобразующие системы в поверхностных условиях являются маловязкими водными растворами, в пластовых - превращаются в гели. Гелеобразование происходит под действием тепловой энергии закачиваемого теплоносителя, без сшивающих агентов [6, 7]. Исследованы кинетика гелеобразования, реологические и фильтрационные характеристики гелей различных типов для неоднородных пластов с проницаемостью в интервале от 0.01 до 10 мкм2. Предложены термотропные гелеобразующие системы: полимерные на основе эфиров целлюлозы и неорганические
системы «соль алюминия - карбамид - вода» с различным временем гелеобразования - от нескольких минут до нескольких суток - в интервале температур 30-320 оС. С их использованием разработаны пять гель-технологий для увеличения нефтеотдачи высоко неоднородных пластов, которые промышленно используются на месторождениях Западной Сибири и республики Коми. Экологическая безопасность реагентов, их безвредность для человека позволяют широко использовать гель-технологии на месторождениях России и других стран.
Для увеличения нефтеотдачи залежей с трудно извлекаемыми запасами, в частности, юрских отложений Западной Сибири и пермо-карбоновой залежи высоковязкой нефти Усинского месторождения, в Институте химии нефти СО РАН предложена комплексная технология с применением гелеобразующих и нефтевытесняющих композиций, обеспечивающая увеличение охвата заводнением и паротепловым воздействием наряду с увеличением коэффициента вытеснения и интенсификацией разработки. В качестве гелеобразующих композиций предложено использовать следующие термотропные системы: неорганические гелеобразующие композиции ГАЛКА на основе солей алюминия и карбамида; полимерные гелеобразующие композиции МЕТКА на основе простых эфиров целлюлозы и карбамида. В качестве нефтевытесняющих - композиции ИХН-60, ИХН-100 на основе ПАВ и щелочной буферной системы; композиции НИНКА на основе ПАВ, солей аммония и карбамида, образующие СО2 и щелочную буферную систему непосредственно в пласте; композиции ИХН-ПРО с регулируемой вязкостью и щелочностью на основе ПАВ, щелочной неорганической буферной системы и многоатомного спирта, совместимые с минерализованными пластовыми водами. Указанные композиции обладают взаимодополняющими составом и физико-химическими свойствами, приводящими к синергетическому усилению их функций.
ИХН СО РАН для повышения эффективности комплексного паротеплового и физико-химического воздействия была предложена внутрипластовая генерация термотропных гелей и золей с авторегулируемой вязкостью. Изменяя концентрацию компонентов в композиции ГАЛКА®, можно получить как свободно-дисперсную подвижную вязкую систему (золь), так и связно-дисперсную неподвижную систему (гель). При образовании золя вязкость системы увеличивается в десятки и сотни раз, но система остается подвижной. Золи можно прокачивать на любое расстояние от скважины, вытеснять остаточную нефть и создавать экраны для перераспределения фильтрационных потоков в любом месте пласта. Для увеличения охвата пласта закачкой пара была предложена градиентная закачка гелеобразующей композиции ГАЛКА-С - сначала закачивается менее концентрированная система, образующая в пласте золь, которую можно прокачивать на большое расстояние от забоя скважины с целью доотмыва нефти и перераспределения потоков, а затем более концентрированная система, образующая в пласте гель - неподвижный экран.
Исследование реологических характеристик растворов, золей и гелей композиции ГАЛКА-С методом ротационной вискозиметрии показало, что при температуре 100-1500С растворы твердой товарной формы (ТТФ) композиции ГАЛКА, разбавленные в 8-10 раз, образуют подвижные золи, их вязкость не превышает 500-900 мПа×с, при тех же условиях растворы ТТФ композиции ГАЛКА, разбавленные в 5 раз, образуют неподвижные гели с вязкостью в интервале 30 000-160 000 мПа×с. В условиях всестороннего сжатия гель является твердообразным телом коагуляционной структуры с резко выраженной тиксотропией, с пределом текучести порядка десятков Па.
Паротепловое воздействие является хотя и эффективной, но технологически сложной и высоко затратной системой разработки. Поэтому перспективно применение физико-химических методов без паротеплового воздействия. Для увеличения нефтеотдачи залежей высоковязких нефтей в отсутствие паротеплового воздействия при 20-40 0С, в частности, пермокарбоновой залежи Усинского месторождения, предлагается использовать золи на основе низкотемпературной гелеобразующей композиции ГАЛКА-НТ, а также композиции на основе ПАВ, в которых гидролиз карбамида осуществляется с применением ферментативного катализа НИНКА, нетрольная композиция) или композиции ИХН-ПРО.
Проведены лабораторные исследования по созданию подвижных оторочек золя на основе композиции ГАЛКА-НТ для эффективного вытеснения высоковязкой нефти пермо-карбоновой залежи Усинского месторождения. Экспериментально исследованы реологические и фильтрационные характеристики и нефтевытесняющая способность золей на основе композиции ГАЛКА-НТ при температуре 20-23 оС на линейных и неоднородных моделях пласта в условиях, моделирующих естественный режим разработки пермо-карбоновой залежи, рис. 1. Установлено, что использование золя композиции ГАЛКА-НТ при разработке залежей вязких нефтей с низкой пластовой температурой позволяет повысить эффективность вытеснения нефти не только за счет увеличения охвата пласта, но и за счет увеличения коэффициента нефтевытеснения. При этом может производиться и градиентная. Последующая закачка одной или нескольких оторочек нефтевытесняющих композиций - ИХН-ПРО, НИНКА® - приводит к дальнейшему доотмыву нефти как из высокопроницаемых, так и из низкопроницаемых частей пласта, при этом достигаются высокие абсолютные коэффициенты нефтевытеснения.
а
б
В ИХН СО РАН для увеличения нефтеотдачи месторождений c различными геолого-физическими условиями, в том числе залежей высоковязких нефтей, разработаны нефтевытесняющие композиции с регулируемой вязкостью и щелочностью ИХН-ПРО на основе ПАВ, щелочной неорганической буферной системы и многоатомного спирта, имеющие низкую температуру замерзания (минус 20 ÷ минус 60 оС). Композиции ИХН-ПРО имеют низкое межфазное натяжение на границе с нефтью, их плотность можно регулировать в пределах от 1.1 до 1.3 кг/м3, вязкость - от десятков до сотен мПа·с. Композиции применимы в широком интервале температур, от 10 до 300 оС, в том числе как при естественном режиме разработки залежей высоковязких нефтей, так и при паротепловом и пароциклическом воздействии на пласт. Высокая нефтевытесняющая способность, совместимость с минерализованными пластовыми водами, снижение набухаемости глин приводит к доотмыву остаточной нефти как из высоко проницаемых, так и из низко проницаемых зон пласта. Кроме того, закачка подвижных оторочек композиции ИХН-ПРО с регулируемой вязкостью в нагнетательные скважины может приводить к выравниванию подвижностей вытесняющего агента и нефти, снижению вязкостной неустойчивости фронта вытеснения, выравниванию фронта вытеснения, ограничению прорывов вытесняющего агента в добывающие скважины, увеличению коэффициента охвата пластов воздействием.
Кроме закачки композиций на основе ПАВ в нагнетательные скважины, для увеличения нефтеотдачи залежей высоковязких нефтей без теплового воздействия предлагается реагентоциклика (аналогично пароциклике). В добывающую скважину закачивается оторочка композиции ПАВ, затем производится закачка воды, после этого производится выдержка 7-14 суток (аналогично пропитке при пароциклике) и затем скважина пускается в работу. Добыча нефти ведется в виде маловязкой прямой эмульсии. После окончания добычи нефти в скважине в первом цикле проводится следующий цикл - закачка чередующихся оторочек композиции ПАВ и воды, как и в первом цикле, выдержка и затем добыча нефти из скважины. В результате наблюдается увеличение добычи нефти как из высокопроницаемых, так и из низкопроницаемых частей пласта.
Рисунок 2 - Влияние закачки композиции ИХН-ПРО на фильтрационные характеристики (подвижность) и вытеснение нефти пермо-карбоновой залежи Усинского месторождения из неоднородной модели пласта при 23 оС в условиях, моделирующих реагенто-циклическую обработку добывающих скважин по «холодной» технологии. Исходная газопроницаемость: 1 колонка - 0.563 мкм2, 2 - 2.653 мкм2
Разработанные композиции ИХН-ПРО на основе ПАВ могут быть использованы для увеличения нефтеотдачи залежей высоковязких нефтей, не охваченных тепловым воздействием, либо путем закачки в нагнетательные скважины на различных стадиях разработки, в том числе и совместно с гелеобразующими композициями, либо путем закачки в добывающие скважины методом реагентоциклики.
В ТПП Лангепаснефтегаз ЛУКОЙЛ-Западная Сибирь 2001 г. на Лас-Еганском и в 2011г. на Урьевском месторождениях, пласт ЮВ1, успешно проведены опытно-промышленные испытания комплексной технологии закачки гелеобразующей и нефтевытесняющей композиций. На Лас-Еганском месторождении в 3 нагнетательные скважины произведена закачка композиции ГАЛКА-термогель-У в количестве 6, 10 и 18 т и композиции ИХН-100 в количестве 30, 50 и 48 т. В 2011 г. на Урьевском месторождении проведена последовательная закачка сначала высокоплотного раствора термотропной гелеобразующей полимерной композиции МЕТКА для тампонирования нижней части трещин ГРП, а затем нефтевытесняющей композиции ИХН-100 для интенсификации выработки низкопроницаемой матрицы юрского коллектора. Результаты анализа промысловых данных показали, что совместное действие композиций приводит к перераспределению фильтрационных потоков в пласте, подключению низко проницаемых пропластков и интенсификации их разработки, что выражается в снижении обводненности добываемой продукции и увеличению дебитов как по нефти, так и по жидкости эксплуатационных скважин, гидродинамически связанных с нагнетательными. Так, дополнительная добыча нефти на участке Лас-Еганском месторождения за период с января 2001 по октябрь 2002 г. составила 4.4 тыс. т. Технология рекомендована к промышленному применению на месторождениях Западной Сибири.
Создана комплексная технология увеличения нефтеотдачи залежей высоковязкой нефти, добываемой методом паротеплового воздействия, путем закачки композиций ГАЛКА-С и НИНКА. В 2009-2011 гг. при площадной закачке пара в 41 паронагнетательную скважину пермо-карбоновой залежи Усинского месторождения произведена закачка композиций ГАЛКА-С и НИНКА. Объем закачки каждой композиции составлял 100-220 тонн на скважино-обработку, всего было закачано 7.7 тыс.тонн композиций. После закачки композиций в добывающих скважинах, гидродинамически связанных с нагнетательными, наблюдается увеличение дебитов по нефти на 4-12 тонн/сут., снижение обводненности на 5-20%. Доплнительная добыча нефти составила около 100.0 тыс.тонн. Технология эффективна для увеличения нефтеотдачи низкопроницаемых и высоко неоднородных коллекторов, на ранней и на поздней стадии разработки месторождений. Общий анализ по годам по всем скважинам показывает эффективность используемых технологий повышения нефтеотдачи.
Любовь Алтунина,
Владимир Кувшинов