USD ЦБ — 58,06 −0,06
EUR ЦБ — 69,15 +0,04
Brent — 56,15 −0,05%
четверг 21 сентября 13:44

Наука и технологии // Оборудование, услуги, материалы

Исследование влияния нитрата кальция на свойства тампонажного цемента

12 мая 2017 г., 10:50К. О. Мешкова, Сибирский федеральный университетNeftegaz.RU655

В статье рассматривается влияние нитрата кальция на физико-механические свойства тампонажного цемента.

Приводятся результаты лабораторных исследований (реология, водоотделение, время загустевания цемента, прочностные показатели цементного камня), которые показали, что нитрат кальция можно применять в качестве добавки-ускорителя для цементирования скважин.

Цементирование - один из самых сложных и ответственных этапов при строительстве скважин, ведь от качества цементного камня зависит состояние скважины: долговечность ее эксплуатации, исключение межколонных перетоков, снижение коррозии цемента и, как следствие, снижение коррозии обсадных труб.

Тампонирование может осуществляться в самых различных условиях (глубина скважины, климат, осложнения и прочее). Поэтому для регулирования свойств цементного раствора используют различные добавки.

Самое большое потребление цемента (рис. 1) приходится на строительную промышленность, далее на строительство мостов, дорог и только потом на нефтегазовую отрасль, а именно на строительство скважин и платформ. Исходя из этого, можно с уверенностью сказать, что все добавки для улучшения качества цемента (прочностные характеристики, время загустевания, коррозионная устойчивость и прочее) первоначально проектируются и исследуются для строительных цементов и только потом «копируются» и подбираются для цементов других отраслей, в частности для нефтегазовой. Следовательно, подбирая добавки для тампонажных цементов, следует сначала изучить спектр добавок для строительных.

РИС. 1. Потребление цемента в промышленности

Целью данной работы является исследование влияния на физико-механические свойства тампонажного цемента нитрата кальция по стандарту API [15] и сравнение с наиболее часто применяемым ускорителем твердения - хлоридом кальция.

Методика исследований

Исследования проводились в лаборатории цементных растворов Schlumberger, расположенной на территории Сибирского федерального университета. Физико-механические свойства изучались в соответствии со стандартами API-10A и 10B [15].

Тампонажные цементы марок ПТЦ-50 и ПТЦ-100 с добавками затворяли на водопроводной воде. В качестве добавок применяли оксид, хлорид и нитрат кальция.

Для проведения экспериментальных исследований применяли оборудование фирмы Chandler Engineering (США): миксер постоянной скорости (модель 3260), термобарический консистометр (модель 7322), цифровой тестер определения прочности на сжатие (модель 4207D), ротационный вискозиметр (модель 3530).

Цементные растворы приготавливали по следующей технологической схеме: на электронных весах взвешивали цемент, добавки и воду; затем с помощью миксера перемешивали исходный раствор в течение 50 секунд (по стандарту API-10А) при частоте вращения вала 12 000 об/мин; измеряли реологические параметры раствора после конденсирования в течение 30 мин.

Для определения времени загустевания заливали полученную смесь в ячейки и устанавливали в термобарический консистометр (для облегченных цементов: температура 41°С; циркуляционная 15°С; давление 22,3 МПа; для утяжеленных: температура 3°С; циркуляционная 15°С; давление 8,4 МПа).

Для определения водоотделения полученный цементный раствор конденсировали в течение 30 мин, затем заливали в стеклянную колбу объемом 300 мл и устанавливали в охлаждающую камеру на 2 часа [15], после этого замеряли выделившуюся на поверхности воду в мл и рассчитывали процентное отношение воды к цементному раствору.

Для определения прочности на сжатие изготавливали кубики 5×5 см путем заполнения стандартных форм приготовленным и проконденсированным в течение 30 мин цементным раствором. Затем формы погружали в воду и выдерживали при температуре 3°С в течение 24 часов, далее извлекали кубики и на 45 мин погружали в воду комнатной температуры. После истечения этого срока кубики извлекали, удаляли излишки воды с поверхности, замеряли длину и ширину каждого кубика (должна быть не меньше 5×5 см по стандарту API-10A) и с помощью цифрового тестера определяли прочность на сжатие.

Теоретические основы

Современный ритм жизни, а также экономические условия, при которых совершаются работы в строительной индустрии, сегодня требуют улучшения качества и при этом высокой скорости выполнения этих работ. В некоторых случаях необходимо получать бетон с достаточно высокой прочностью на ранних стадиях.

Для получения такого бетона использовались различного рода добавки-ускорители. Хлорид кальция в этой индустрии был наиболее часто применяемой добавкой. Однако, как показала практика, присутствие хлора ускоряет процесс коррозии металлических стержней, контактирующих непосредственно с бетоном. Вследствие чего ухудшается качество бетона и безопасность таких конструкций. Поэтому возникла необходимость в проведении исследований и испытаний цементных растворов с добавками, в составе которых нет хлора.

В нефтегазовой отрасли существую такие же проблемы, как и в строительной индустрии, - это усадка цемента, трещинообразование, коррозия (обсадных труб). Основной причиной потери герметичности обсадных колонн является коррозия по наружной поверхности (рис. 2), интенсивность которой определяется наличием и качеством цементного камня за эксплуатационными колоннами.

РИС. 2. Наружная коррозия обсадных труб

Высокая скорость коррозионного разрушения обсадных колонн обусловлена наличием в тампонажном растворе хлористых добавок [1].

В промышленных условиях эксплуатации уменьшение потерь от коррозии может быть достигнуто при помощи введения в агрессивную среду специальных веществ, которые вызывают значительное снижение скорости коррозионного процесса [2]. Такие вещества называются замедлителями или ингибиторами коррозии. Таким образом, при цементировании скважин также следует обратить внимание на безхлористые добавки-ускорители, которые не будут вызывать коррозию обсадных труб.

Так Додсон в работах [3, 4] установил, что нитрат кальция можно применять в качестве добавки-ускорителя, а также выявил, что он помимо хороших прочностных показателей еще может выступать как замедлитель коррозии у металла, контактирующего с цементом.

Далее Джатнес и Найгаард [5-8] установили, что нитрат кальция достаточно эффективен при низких температурах, а эффективность добавки зависит от качества и состава цемента. Как оказалось, с увеличением содержания белита в цементе, эффективность нитрата кальция повышается.

В 2003 г Польский исследовательский институт дорожного и мостового строительства, а затем в 2006 г и лабораторный центр ООО «Россия» утвердили нитрат кальция как противоморозную добавку [9, 10].

Доктором Гарольдом Джаcтнесом [11] были проведены исследования, в результате которых он обнаружил, что нитрат кальция также может выступать в качестве замедлителя коррозии арматурных стержней в бетоне. Он сравнил действие нитрата кальция с наиболее часто применяемым ингибитором - нитритом кальция. Было сделано заключение, что нитрат кальция, по крайней мере, такой же эффективный ингибитор, как и нитрит кальция, но, помимо этого, он является более дешевым и менее вредным [12].

Анализ представленных работ показал, что необходимо провести исследования влияния нитрата кальция на физико-механические свойства тампонажного цемента для проведения цементирования нефтяных и газовых скважин.

В 2012 г на базе Красноярского машиностроительного завода были проведены исследования по получению комплексных нитратных солей путем переработки отходов нефелинового шлама азотной кислотой [13], а в 2013 г проведены лабораторные исследования по применению двух полученных добавок НКШ-1 и ТНК-1 для строительных и тампонажных цементов [14]. Было выявлено, что добавка НКШ-1 более технологична, способствует саморазогреву цементного раствора, благодаря чему подходит для использования в качестве противоморозной добавки.

Результаты лабораторных исследований и обсуждение

Цементирование скважин осуществляется в два этапа: закачивание облегченного и утяжеленного цементных растворов (рис. 3).

РИС. 3. Последовательность закачивания цементного раствора в скважину

Заключение

Анализ выполненных исследований позволяет сделать следующие выводы:

  1. Нитрат кальция может быть использован в качестве добавки-ускорителя при тампонировании скважин, как для облегченного, так и для утяжеленного цементов.
  2. Нитрат кальция интенсивно снижает водоотделение практически до нулевого уровня при любых концентрациях добавки.
  3. Подходит по реологическим и прочностным показателям.
  4. Также отмечено положительное влияние нитрата кальция при совместном использовании расширяющей добавки СаО.

Для более полного представления о действии нитрата кальция на свойства цементного раствора и цементного камня, а также использования этой добавки на практике тампонирования скважин следует изучить прочностные характеристики при более долгих сроках твердения, склонность к высолообразованию, тепловыделение и пр.

ЛИТЕРАТУРА

  1. Агзамов Ф. А., Измухамбетов Б. С. «Долговечность тампонажного камня в коррозионно - активных средах». СПб. : Недра, 2005. 318 с.
  2. Авдеенко А.П., Поляков А.Е. «Коррозия и защита металлов: Краткий курс лекций». - Краматорск: ДГМА, 2003. - 104 с.
  3. Додсон. Бетонная смесь. Нью-Йорк: В.Н. Рейнхольд:1990.
  4. Ангстадт, Херли. Патент США № 3427175, февраль 11, 1969.
  5. Джастнес. Доклад СТП F93013. SINTEF конструкций и бетона. Норвегия: Трондхейм; 1993.
  6. Джастнес, Найгаард «Влияние нитрата кальция на связывающую способность цемента и скорость индуцированной коррозии при использовании в строительных растворах». Труды международной конференции по проблемам коррозии и защиты от коррозии стали в бетоне. Великобритания: Шеффилд; 1994. с. 491-502.
  7. Джастнес, Найгаард «Технический нитрат кальция в качестве ускорителя схватывания для цемента при низких температурах». Cement Concr Res 1995;25(8): 1766-74.
  8. Джастнес: «Объяснение долгосрочной прочности на сжатие бетона при использовании нитрата кальция», Труды 11-го Международного конгресса по химии цемента (ICCC), 11-16 мая 2003 года, Дурбан, Южная Африка, с.475-484.
  9. Нитрат кальция NitCal - комплексная добавка для бетонов Дата: 31.10.2008 «Вестник строительного комплекса» № 59.
  10. http://www.bhz.kosnet.ru/Rus/Prod/Tech/PDF/06_HK.pdf.
  11. Джастнес: «Ингибиторы коррозии для бетона», Труды Международного симпозиума по прочности бетона I памяти профессора доктора Раймундо, Ривера, 12-13 мая 2005, Монтеррей, Н.Л. Мексика, с. 179-199.
  12. Исследования Цемента и Бетона, «NITCAL - комплексная добавка в бетоны» // ООО Элсвиер Сайенс. - Норвегия, 1995.
  13. Научно-технический отчет: «Разработка технологических параметров процессов промышленного комплекса утилизации некондиционных окислителей ракетного топлива и получения активных комплексных нитратных солей для растворов бурения нефтегазовых скважин и добавок в бетон» // Открытое акционерное общество «Красноярский машиностроительный завод» - Химзавод - фил. ОАО «Красмаш», 2012 г
  14. Неверов А.Л., Вертопрахова Л.А., Баталина Л.С., Минеев А.В. «Исследования влияния добавок комплексных нитратных солей на свойства общестроительного и тампонажного цемента». Журнал «Инженерная геология», 2013, с. 64-71.
  15. Стандарт API-10A и 10B.
  16. Положение АО «Ванкорнефть» по креплению скважин.

Neftegaz.RU context